When parts will be bonded, slight spacing (≤ 0.68 mm (0.025 in.)) will be acceptable. The part shall be mounted approximately parallel to the mounting surface.

NASA-STD-8739.3 [8.4.2.a]

UNACCEPTABLE

IMPROPER HORIZONTAL SPACING

Parts intended for horizontal mounting shall be parallel to, and in contact with, the mounting surface. Part spacing above the mounting surface should not exceed 0.68 mm (0.025 in.), unless the part will be bonded.

NASA-STD-8739.3 [8.4.2.a]

STRESS RELIEF

Stress relief shall be incorporated, wherever possible, into all leads and conductors in solder connections to provide freedom of movement of part leads or conductors between points of constraint. Camel-hump bend pictured.

NASA-STD-8739.3 [8.1.1]

UNACCEPTABLE

INSUFFICIENT STRESS RELIEF

Stress relief shall be incorporated, wherever possible, into all leads and conductors in solder connections to provide freedom of movement of part leads or conductors between points of constraint.

NASA-STD-8739.3 [8.1.1], [13.6.2.a.10]

IMPROPER VERTICAL MOUNTING

NON-PLATED-THROUGH HOLE (NPTH)

The component has been mounted with a space between the component end and the board surface, eliminating any mechanical support to the part or solder joint.

NASA-STD-8739.3 [13.6.2.a.6]

IMPROPER VERTICAL MOUNTING

PLATED THROUGH HOLE (PTH)

The component has been mounted with the end of the component in contact with the plated-through-hole (PTH). This will result in solder contact with the part body meniscus.

NASA-STD-8739.3 [8.4.2.b.1], [13.6.2.a.6]

THROUGH-HOLE SOLDERING AXIAL COMPONENTS (cont.)

PREFERRED

HORIZONTAL MOUNTING IN NPTH COMPLETED ASSEMBLY

Parts shall be parallel to, and in full contact with, the mounting surface, and approximately centered between the termination holes. Leads exhibit proper stress relief bends and spacing.

NASA-STD-8739.3 [8.4.2.a]

PREFERRED

HORIZONTAL MOUNTING IN PTH COMPLETED ASSEMBLY

The component terminations on both sides of the board are completely wetted. The solder fillets are smooth, nonporous, undisturbed, exhibit a concave profile, and extend to the edge of the termination pad.

NASA-STD-8739.3 [13.6.1]

ACCEP TABLE

STRESS RELIEF

Stress relief shall be incorporated, wherever possible, into all leads and conductors in solder connections to provide freedom of movement of part leads or conductors between points of constraint. Camel-hump bend pictured.

NASA-STD-8739.3 [8.1.1]

UNACCEPTABLE

INSUFFICIENT STRESS RELIEF

Stress relief shall be incorporated, wherever possible, into all leads and conductors in solder connections to provide freedom of movement of part leads or conductors between points of constraint.

NASA-STD-8739.3 [8.1.1], [13.6.2.a.10]

IMPROPER VERTICAL MOUNTING

NON-PLATED-THROUGH HOLE (NPTH)

The component has been mounted with a space between the component end and the board surface, eliminating any mechanical support to the part or solder joint.

NASA-STD-8739.3 [13.6.2.a.6]

IMPROPER VERTICAL MOUNTING

PLATED THROUGH HOLE (PTH)

The component has been mounted with the end of the component in contact with the plated-through-hole (PTH). This will result in solder contact with the part body meniscus.

NASA-STD-8739.3 [8.4.2.b.1], [13.6.2.a.6]

THROUGH-HOLE SOLDERING AXIAL COMPONENTS

AXIAL COMPONENTS

Axial-ledged components are often considered the most common type of discrete component used in through-hole printed wiring assembly. See Section 6.01 “Through-Hole Soldering, General Requirements”, for common accept / reject criteria.
Leads crossing exposed conductors shall be sleeved with non-conductive sleeving or shrink tubing. Tubing shall be trimmed to meet insulation spacing requirements. Transparent / translucent material is recommended.

Best Workmanship Practice

ACCEPTABLE LEADS CROSSING EXPOSED CONDUCTORS

PREFERRED VERTICAL MOUNTING IN PTH INTERIM ASSEMBLY

The component shall be mounted with a minimum of 0.5 mm (0.020 in) to a maximum of 1.27 mm (0.050 in.) clearance between the end of the component and the board surface.

NASA-STD-8739.3 [8.4.2.b.1]

PREFERRED VERTICAL MOUNTING IN PTH COMPLETED ASSEMBLY

The component terminations on both sides of the board are completely wetted. The solder fillets are smooth, nonporous, undisturbed, exhibit a concave profile, and extend to the edge of the termination pad.

NASA-STD-8739.3 [13.6.1]

PREFERRED VERTICAL MOUNTING IN NPTH INTERIM ASSEMBLY

The component shall be mounted with the end in contact with the board surface, and shall be terminated with an off-the-pad-lap solder joint. The opposite lead shall have 2 right angle bends.

NASA-STD-8739.3 [8.4.2.b.2]

PREFERRED VERTICAL MOUNTING IN NPTH COMPLETED ASSEMBLY

The component terminations are completely wetted. The solder fillets are smooth, nonporous, undisturbed, exhibit a concave profile, and extend to the edge of the termination pad. The component is staked.

NASA-STD-8739.3 [13.6.1]

ACCEPTABLE ANGULARITY

Angularity shall not exceed 0.68 mm (0.025 in.), provided part of the component is in contact with the board, and the angularity does not violate minimum electrical spacing or lead protrusion requirements.

Best Workmanship Practice

ACCEPTABLE HEAT PRODUCING PARTS

Parts which dissipate heat in quantities of 1 Watt or greater, or in quantities sufficient to damage the laminate shall be mounted with sufficient standoff (≥ 1.5mm (0.060 in.)) and shall be mechanically restrained.

Best Workmanship Practice